Fast Convolutional Sparse Coding in the Dual Domain
نویسندگان
چکیده
Convolutional sparse coding (CSC) is an important building block of many computer vision applications ranging from image and video compression to deep learning. We present two contributions to the state of the art in CSC. First, we significantly speed up the computation by proposing a new optimization framework that tackles the problem in the dual domain. Second, we extend the original formulation to higher dimensions in order to process a wider range of inputs, such as RGB images and videos. Our results show up to 20 times speedup compared to current state-of-the-art CSC solvers.
منابع مشابه
Image Super-Resolution with Fast Approximate Convolutional Sparse Coding
We present a computationally e cient architecture for image super-resolution that achieves state-of-the-art results on images with large spatial extend. Apart from utilizing Convolutional Neural Networks, our approach leverages recent advances in fast approximate inference for sparse coding. We empirically show that upsampling methods work much better on latent representations than in the origi...
متن کاملConvolutional Sparse Coding: Boundary Handling Revisited
Two different approaches have recently been proposed for boundary handling in convolutional sparse representations, avoiding potential boundary artifacts arising from the circular boundary conditions implied by the use of frequency domain solution methods by introducing a spatial mask into the convolutional sparse coding problem. In the present paper we show that, under certain circumstances, t...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملFast convolutional sparse coding using matrix inversion lemma
Article history: Available online 3 May 2016
متن کامل$\mathbf{D^3}$: Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images
In this paper, we design a Deep Dual-Domain (D) based fast restoration model to remove artifacts of JPEG compressed images. It leverages the large learning capacity of deep networks, as well as the problem-specific expertise that was hardly incorporated in the past design of deep architectures. For the latter, we take into consideration both the prior knowledge of the JPEG compression scheme, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.09479 شماره
صفحات -
تاریخ انتشار 2017